summaryrefslogtreecommitdiffstats
path: root/src/video_core/engines/sw_blitter/blitter.cpp
blob: 67ce9134bfe598a47afc291f5039cb8f22dd855a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later

#include <algorithm>
#include <cmath>
#include <vector>

#include "common/scratch_buffer.h"
#include "video_core/engines/sw_blitter/blitter.h"
#include "video_core/engines/sw_blitter/converter.h"
#include "video_core/memory_manager.h"
#include "video_core/surface.h"
#include "video_core/textures/decoders.h"

namespace Tegra {
class MemoryManager;
}

using VideoCore::Surface::BytesPerBlock;
using VideoCore::Surface::PixelFormatFromRenderTargetFormat;

namespace Tegra::Engines::Blitter {

using namespace Texture;

namespace {

constexpr size_t ir_components = 4;

void NearestNeighbor(std::span<const u8> input, std::span<u8> output, u32 src_width, u32 src_height,
                     u32 dst_width, u32 dst_height, size_t bpp) {
    const size_t dx_du = std::llround((static_cast<f64>(src_width) / dst_width) * (1ULL << 32));
    const size_t dy_dv = std::llround((static_cast<f64>(src_height) / dst_height) * (1ULL << 32));
    size_t src_y = 0;
    for (u32 y = 0; y < dst_height; y++) {
        size_t src_x = 0;
        for (u32 x = 0; x < dst_width; x++) {
            const size_t read_from = ((src_y * src_width + src_x) >> 32) * bpp;
            const size_t write_to = (y * dst_width + x) * bpp;

            std::memcpy(&output[write_to], &input[read_from], bpp);
            src_x += dx_du;
        }
        src_y += dy_dv;
    }
}

void NearestNeighborFast(std::span<const f32> input, std::span<f32> output, u32 src_width,
                         u32 src_height, u32 dst_width, u32 dst_height) {
    const size_t dx_du = std::llround((static_cast<f64>(src_width) / dst_width) * (1ULL << 32));
    const size_t dy_dv = std::llround((static_cast<f64>(src_height) / dst_height) * (1ULL << 32));
    size_t src_y = 0;
    for (u32 y = 0; y < dst_height; y++) {
        size_t src_x = 0;
        for (u32 x = 0; x < dst_width; x++) {
            const size_t read_from = ((src_y * src_width + src_x) >> 32) * ir_components;
            const size_t write_to = (y * dst_width + x) * ir_components;

            std::memcpy(&output[write_to], &input[read_from], sizeof(f32) * ir_components);
            src_x += dx_du;
        }
        src_y += dy_dv;
    }
}

void Bilinear(std::span<const f32> input, std::span<f32> output, size_t src_width,
              size_t src_height, size_t dst_width, size_t dst_height) {
    const auto bilinear_sample = [](std::span<const f32> x0_y0, std::span<const f32> x1_y0,
                                    std::span<const f32> x0_y1, std::span<const f32> x1_y1,
                                    f32 weight_x, f32 weight_y) {
        std::array<f32, ir_components> result{};
        for (size_t i = 0; i < ir_components; i++) {
            const f32 a = std::lerp(x0_y0[i], x1_y0[i], weight_x);
            const f32 b = std::lerp(x0_y1[i], x1_y1[i], weight_x);
            result[i] = std::lerp(a, b, weight_y);
        }
        return result;
    };
    const f32 dx_du =
        dst_width > 1 ? static_cast<f32>(src_width - 1) / static_cast<f32>(dst_width - 1) : 0.f;
    const f32 dy_dv =
        dst_height > 1 ? static_cast<f32>(src_height - 1) / static_cast<f32>(dst_height - 1) : 0.f;
    for (u32 y = 0; y < dst_height; y++) {
        for (u32 x = 0; x < dst_width; x++) {
            const f32 x_low = std::floor(static_cast<f32>(x) * dx_du);
            const f32 y_low = std::floor(static_cast<f32>(y) * dy_dv);
            const f32 x_high = std::ceil(static_cast<f32>(x) * dx_du);
            const f32 y_high = std::ceil(static_cast<f32>(y) * dy_dv);
            const f32 weight_x = (static_cast<f32>(x) * dx_du) - x_low;
            const f32 weight_y = (static_cast<f32>(y) * dy_dv) - y_low;

            const auto read_src = [&](f32 in_x, f32 in_y) {
                const size_t read_from =
                    ((static_cast<size_t>(in_x) * src_width + static_cast<size_t>(in_y)) >> 32) *
                    ir_components;
                return std::span<const f32>(&input[read_from], ir_components);
            };

            auto x0_y0 = read_src(x_low, y_low);
            auto x1_y0 = read_src(x_high, y_low);
            auto x0_y1 = read_src(x_low, y_high);
            auto x1_y1 = read_src(x_high, y_high);

            const auto result = bilinear_sample(x0_y0, x1_y0, x0_y1, x1_y1, weight_x, weight_y);

            const size_t write_to = (y * dst_width + x) * ir_components;

            std::memcpy(&output[write_to], &result, sizeof(f32) * ir_components);
        }
    }
}

} // namespace

struct SoftwareBlitEngine::BlitEngineImpl {
    Common::ScratchBuffer<u8> tmp_buffer;
    Common::ScratchBuffer<u8> src_buffer;
    Common::ScratchBuffer<u8> dst_buffer;
    Common::ScratchBuffer<f32> intermediate_src;
    Common::ScratchBuffer<f32> intermediate_dst;
    ConverterFactory converter_factory;
};

SoftwareBlitEngine::SoftwareBlitEngine(MemoryManager& memory_manager_)
    : memory_manager{memory_manager_} {
    impl = std::make_unique<BlitEngineImpl>();
}

SoftwareBlitEngine::~SoftwareBlitEngine() = default;

bool SoftwareBlitEngine::Blit(Fermi2D::Surface& src, Fermi2D::Surface& dst,
                              Fermi2D::Config& config) {
    const auto get_surface_size = [](Fermi2D::Surface& surface, u32 bytes_per_pixel) {
        if (surface.linear == Fermi2D::MemoryLayout::BlockLinear) {
            return CalculateSize(true, bytes_per_pixel, surface.width, surface.height,
                                 surface.depth, surface.block_height, surface.block_depth);
        }
        return static_cast<size_t>(surface.pitch * surface.height);
    };
    const auto process_pitch_linear = [](bool unpack, std::span<const u8> input,
                                         std::span<u8> output, u32 extent_x, u32 extent_y,
                                         u32 pitch, u32 x0, u32 y0, size_t bpp) {
        const size_t base_offset = x0 * bpp;
        const size_t copy_size = extent_x * bpp;
        for (u32 y = y0; y < extent_y; y++) {
            const size_t first_offset = y * pitch + base_offset;
            const size_t second_offset = y * extent_x * bpp;
            u8* write_to = unpack ? &output[first_offset] : &output[second_offset];
            const u8* read_from = unpack ? &input[second_offset] : &input[first_offset];
            std::memcpy(write_to, read_from, copy_size);
        }
    };

    const u32 src_extent_x = config.src_x1 - config.src_x0;
    const u32 src_extent_y = config.src_y1 - config.src_y0;

    const u32 dst_extent_x = config.dst_x1 - config.dst_x0;
    const u32 dst_extent_y = config.dst_y1 - config.dst_y0;
    const auto src_bytes_per_pixel = BytesPerBlock(PixelFormatFromRenderTargetFormat(src.format));
    const auto dst_bytes_per_pixel = BytesPerBlock(PixelFormatFromRenderTargetFormat(dst.format));
    const size_t src_size = get_surface_size(src, src_bytes_per_pixel);

    Core::Memory::GpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead> tmp_buffer(
        memory_manager, src.Address(), src_size, &impl->tmp_buffer);

    const size_t src_copy_size = src_extent_x * src_extent_y * src_bytes_per_pixel;
    const size_t dst_copy_size = dst_extent_x * dst_extent_y * dst_bytes_per_pixel;

    impl->src_buffer.resize_destructive(src_copy_size);

    const bool no_passthrough =
        src.format != dst.format || src_extent_x != dst_extent_x || src_extent_y != dst_extent_y;

    const auto conversion_phase_same_format = [&]() {
        NearestNeighbor(impl->src_buffer, impl->dst_buffer, src_extent_x, src_extent_y,
                        dst_extent_x, dst_extent_y, dst_bytes_per_pixel);
    };

    const auto conversion_phase_ir = [&]() {
        auto* input_converter = impl->converter_factory.GetFormatConverter(src.format);
        impl->intermediate_src.resize_destructive((src_copy_size / src_bytes_per_pixel) *
                                                  ir_components);
        impl->intermediate_dst.resize_destructive((dst_copy_size / dst_bytes_per_pixel) *
                                                  ir_components);
        input_converter->ConvertTo(impl->src_buffer, impl->intermediate_src);

        if (config.filter != Fermi2D::Filter::Bilinear) {
            NearestNeighborFast(impl->intermediate_src, impl->intermediate_dst, src_extent_x,
                                src_extent_y, dst_extent_x, dst_extent_y);
        } else {
            Bilinear(impl->intermediate_src, impl->intermediate_dst, src_extent_x, src_extent_y,
                     dst_extent_x, dst_extent_y);
        }

        auto* output_converter = impl->converter_factory.GetFormatConverter(dst.format);
        output_converter->ConvertFrom(impl->intermediate_dst, impl->dst_buffer);
    };

    // Do actual Blit

    impl->dst_buffer.resize_destructive(dst_copy_size);
    if (src.linear == Fermi2D::MemoryLayout::BlockLinear) {
        UnswizzleSubrect(impl->src_buffer, tmp_buffer, src_bytes_per_pixel, src.width, src.height,
                         src.depth, config.src_x0, config.src_y0, src_extent_x, src_extent_y,
                         src.block_height, src.block_depth, src_extent_x * src_bytes_per_pixel);
    } else {
        process_pitch_linear(false, tmp_buffer, impl->src_buffer, src_extent_x, src_extent_y,
                             src.pitch, config.src_x0, config.src_y0, src_bytes_per_pixel);
    }

    // Conversion Phase
    if (no_passthrough) {
        if (src.format != dst.format || config.filter == Fermi2D::Filter::Bilinear) {
            conversion_phase_ir();
        } else {
            conversion_phase_same_format();
        }
    } else {
        impl->dst_buffer.swap(impl->src_buffer);
    }

    const size_t dst_size = get_surface_size(dst, dst_bytes_per_pixel);
    Core::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::SafeReadWrite>
        tmp_buffer2(memory_manager, dst.Address(), dst_size, &impl->tmp_buffer);

    if (dst.linear == Fermi2D::MemoryLayout::BlockLinear) {
        SwizzleSubrect(tmp_buffer2, impl->dst_buffer, dst_bytes_per_pixel, dst.width, dst.height,
                       dst.depth, config.dst_x0, config.dst_y0, dst_extent_x, dst_extent_y,
                       dst.block_height, dst.block_depth, dst_extent_x * dst_bytes_per_pixel);
    } else {
        process_pitch_linear(true, impl->dst_buffer, tmp_buffer2, dst_extent_x, dst_extent_y,
                             dst.pitch, config.dst_x0, config.dst_y0,
                             static_cast<size_t>(dst_bytes_per_pixel));
    }
    return true;
}

} // namespace Tegra::Engines::Blitter